MATH 3060 Assignment 4 solution

Chan Ki Fung

October 21, 2021

- 1. (a) This is because for any $x \in X$ with $x \neq x_0$, we have $d(x, x_0) = 1 > \epsilon$.
 - (b) For each $x \in X$, $\{x\} = B_{\frac{1}{2}}(x)$ is open, but every set is the union of its one point subset, so every subsets of X is open. Since a subset of X is closed if and only if its complement is open, every subset of X is closed as well.
- 2. (a) Yes. Let $g \in B^1_{\epsilon}(f)$, since $B^1_{\epsilon}(f)$ is open with respect to d_1 , we can find an r > 0 such that $B^1_r(g) \subset B^1_{\epsilon}(f)$. But since $d_1 \leq d_{\infty}$, we have $B^{\infty}_r(g) \subset B^1_r(g)$.
 - (b) No. Consider the function

$$f_n(x) = \begin{cases} 1 - nx & \text{if } \epsilon(x \le \frac{1}{n}) \\ 0 & \text{if } x \ge \frac{1}{n} \end{cases}$$

Then $d_1(f_n, 0) \to 0$, this means that for any r > 0, $f_n \in B^1_r(0)$ for n large enough. On the other hand, $d_{\infty}(f_n, 0) = \epsilon$, which means that $f_n \notin B^{\infty}_{\epsilon}(0)$ for any n. Therefore, $B^{\infty}_{\epsilon}(0)$ cannot be open with respect to d_2 .

3. (a) It is clear that d(x,y) = d(y,x), $d(x,y) \ge 0$ and d(x,y) = 0 if and only if x = y. Moreover, for $x, y, z \in l_2$. We want to show

$$d(x,y) + d(y,z) \ge d(x,z)$$

$$\iff \sqrt{\sum (x_i - y_i)^2} + \sqrt{\sum (y_i - z_i)^2} \ge \sqrt{\sum (x_i - z_i)^2}$$

$$\iff \left(\sqrt{\sum (x_i - y_i)^2} + \sqrt{\sum (y_i - z_i)^2}\right)^2 \ge \sqrt{\sum [(x_i - y_i) + (y_i - z_i))]^2}$$

$$\iff \sqrt{\sum (x_i - y_i)^2 \sum (y_i - z_i)^2} \ge \sum (x_i - y_i)(y_i - z_i)$$

$$\iff \sum (x_i - y_i)^2 \sum (y_i - z_i)^2 \ge \sum (x_i - y_i)^2(y_i - z_i)^2$$

which is the Cauchy Schwartz inequality.

(b) Suppose $x^n \in H$ with $\lim x^n = x$. We need to show that $x_i \leq 1/i$ for each *i*. But in fact

$$|x_i - x_i^n|^2 < \sum_{j=1}^{\infty} |x_j - x_j^n|^2 \to 0.$$

We see that $x_i = \lim x_i^n \le 1/i$, so $x \in H$. This shows that H is closed.

- 4. (a) It is open but not closed. It is open because for $x \in [a, c)$, we have $B_r(x) \subset [a, c)$ for $r = \frac{1}{2}(c x)$. It is not closed because $\lim_{n \to \infty} (c 1/n) = c \notin [a, c)$.
 - (b) It is open but not closed. It is open because for $x \in (c, b)$, we have $B_r(x) \subset [a, c)$ for $r = \frac{1}{2} \min\{x c, b x\}$. It is not closed because $\lim_{n \to \infty} (c + 1/n) = c \notin (c, b)$.
 - (c) The only subsets of [a, b) which are both open and closed are [a, b)and \emptyset . In fact, suppose $U \subset [a, b)$ is both open and closed. Suppose $U \neq [a, b), \emptyset$. Since U nonempty, inf U exists and $\geq a$. We claim that inf U must be a. If $\inf U = c > a$, then because U is closed, we must have $c \in U$. But then since U is open, $x - \epsilon \in U$ for some small ϵ , this contradicts to $c = \inf U$. We thus have $a = \inf U$, and hence $a \in U$.

However, we can apply the same argument to the complement $V = [a, b) \setminus U$ of U to conclude $a \in V$. This is a contradiction because we cannot have $a \in U \cap V = \emptyset$.